A CRITICAL PHENOMENON FOR SUBLINEAR ELLIPTIC EQUATIONS IN CONE-LIKE DOMAINS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A critical phenomenon for sublinear elliptic equations in cone–like domains

We study positive supersolutions to an elliptic equation (∗) −∆u = c|x|u, p, s ∈ R, in cone–like domains in R (N ≥ 2). We prove that in the sublinear case p < 1 there exists a critical exponent p∗ < 1 such that equation (∗) has a positive supersolution if and only if −∞ < p < p∗. The value of p∗ is determined explicitly by s and the geometry of the cone.

متن کامل

Positive solutions to singular semilinear elliptic equations with critical potential on cone–like domains

We study the existence and nonexistence of positive (super-) solutions to a singular semilinear elliptic equation −∇ · (|x|∇u)−B|x|u = C|x|u in cone–like domains of R (N ≥ 2), for the full range of parameters A,B, σ, p ∈ R and C > 0. We provide a complete characterization of the set of (p, σ) ∈ R such that the equation has no positive (super-) solutions, depending on the values of A,B and the p...

متن کامل

Positive solutions to superlinear second–order divergence type elliptic equations in cone–like domains

We study the problem of the existence and nonexistence of positive solutions to a superlinear second–order divergence type elliptic equation with measurable coefficients −∇ · a · ∇u = u (∗), p > 1, in an unbounded cone–like domain G ⊂ R (N ≥ 3). We prove that the critical exponent p∗(a,G) = inf{p > 1 : (∗) has a positive supersolution at infinity in G } for a nontrivial cone– like domain is alw...

متن کامل

A Priori Estimates of Positive Solutions for Sublinear Elliptic Equations

In this paper, a priori estimates of positive solutions for sublinear elliptic equations are given in terms of thicknesses of domains. To this end, a supersolution is constructed by a composite function of a solution to an ordinary differential equation and a distance function. The results work efficiently in the case where the domain is an exterior or an interior of a convex set.

متن کامل

Elliptic Problems for Pseudo Differential Equations in a Polyhedral Cone

The author develops the theory of pseudo differential equations and boundary value problems in nonsmooth domains. A model pseudo differential equation in a special cone is reduced to a certain integral equation. AMS Subject Classifications: 35S15, 45F05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the London Mathematical Society

سال: 2005

ISSN: 0024-6093,1469-2120

DOI: 10.1112/s0024609305004492